Papers
- L. Aiello, M. Fontana, A. Guglielmi (2023+). Bayesian Functional Emulation of CO2 Emissions on Future
Climate Change Scenarios.
Environmetrics, Early View, DOI: 10.1002/env.2821
- M. De Iorio, S. Favaro, A. Guglielmi, L. Ye (2023).
Bayesian Nonparametric Mixture Modeling for Temporal Dynamics of Gender Stereotypes.
The Annals of Applied Statistics, Next Issues, DOI: 10.1214/22-AOAS1717
- Y. Ren, A. Guglielmi, L. Maestripieri (2023). Gender Inequalities at Work in Southern Europe.
Metron, Latest articles, DOI 10.1007/s40300-023-00245-4
- A. Mozden, A. Cremaschi, A. Cadonna, A. Guglielmi, G. Kastner (2022).
Bayesian modeling and clustering for spatio-temporal areal data: an application to Italian unemployment.
Spatial Statistics, Vol. 52, 100715
- M. Beraha, R. Argiento, J. Møller, A. Guglielmi (2022).
MCMC computations for Bayesian mixture models using repulsive point processes.
Journal of Computational and Graphical Statistics, Vol. 31, 422--435
- M. Beraha, M. Pegoraro, R. Peli, A. Guglielmi (2021).
Spatially dependent mixture models via the Logistic Multivariate CAR prior.
Spatial Statistics, Vol. 46, 100548
- M. Beraha, A. Guglielmi, F. A. Quintana (2021).
The Semi-Hierarchical Dirichlet process and its application to clustering homogeneous
distributions.
Bayesian Analysis, Vol. 16, 1187--1219
- D. Messenio, A. Babbi, A. Guglielmi, M. Airaldi (2022).
Focal electroretinogram and microperimetry testing of photoreceptor-retinal pigment epithelium function in intermediate age-related macular degeneration.
Acta Ophthalmologica, Vol. 100, 277-284
- D. Bystrova, G. Poggiato, B. Bektas, J. Arbel, J. S. Clark, A. Guglielmi, W. Thuiller (2021).
Clustering species with residual covariance matrix in joint species
distribution models.
Frontiers in Ecology and Evolution, Vol. 9, 1-11
- V. Nicoletta, A. Guglielmi, A. Ruiz, V. Belangér, E. Lanzarone (2021).
Bayesian spatio-temporal modelling and prediction of areal demands for ambulance services.
IMA Journal of Management Mathematics, Vol. 33, 101-121
- M. Tallarita, M. De Iorio, A. Guglielmi, J. Malone-Lee (2020).
Bayesian Autoregressive Frailty Models for Inference in Recurrent Events.
The International Journal of
Biostatistics, Vol. 16, 1-18
- G. Paulon, M. De Iorio, A. Guglielmi, F. Ieva (2020).
Joint modelling of recurrent events and survival: a Bayesian nonparametric approach .
Biostatistics, Vol. 21, 1-14
- I. Bianchini, A. Guglielmi, F.A. Quintana (2019).
Determinantal point process mixtures via spectral density approach.
Bayesian Analysis, , Vol. 15, 187-214
- A. Guglielmi, G. Guidoboni, A. Harris, I. Sartori and L. Torriani (2019).
Statistical methods in medicine: application to the study of glaucoma.
In Mathematical Modeling of Ocular
Fluid Dynamics. From Theory to Clinical Applications (G. Guidoboni, A. Harris, R. Sacco Eds.), Birkhäuser, 599-612
- A. Guglielmi, F. Ieva, A.M. Paganoni, F.A. Quintana (2018).
A semiparametric Bayesian joint model for multiple mixed-type outcomes: an Application to Acute Myocardial Infarction.
Advances in Data Analysis and Classification, Vol. 12, 399-423
- V. Nicoletta, E. Lanzarone, A. Guglielmi, V. Belanger, A. Ruiz (2017).
Bayesian models for describing and predicting the stochastic demand of emergency calls.
In Bayesian Statistics in Action. BAYSM 2016.
Springer Proceedings in Mathematics & Statistics, vol. 194, (Argiento R., Lanzarone E., Antoniano Villalobos I., Mattei A. Eds.), Springer, 203-212.
- Argiento, R., Guglielmi, A., Lanzarone, E., Nawajah, I. (2017).
Bayesian joint modeling of the health profile and demand of home care patients.
IMA Journal of Management Mathematics, Vol. 28, 531--552
- Argiento, R., Bianchini, I. Guglielmi, A. (2016).
Posterior sampling from epsilon-approximation of normalized completely random measure mixtures.
Electronic Journal of Statistics, Vol. 10, 3516--3547
- Argiento, R., Guglielmi, A., Lanzarone, E., Nawajah, I. (2016).
A Bayesian framework for describing and predicting the stochastic demand of home care patients.
Flexible Services and Manufacturing Journal, Vol. 28, 254--279.
Post-print pdf
- Argiento, R., Bianchini, I. Guglielmi, A. (2016).
A blocked Gibbs sampler for NGG-mixture models via a priori truncation. Statistics and Computing , Vol 26, 641--661.
- R. Argiento, A. Guglielmi, C.K. Hsiao, F. Ruggeri, C. Wang (2015).
Modelling the association between clusters of SNPs and disease responses.
In Nonparametric Bayesian Methods in Biostatistics and Bioinformatics ( R. Mitra, P. Mueller Eds.), Springer.
- Guglielmi, A., Ieva, F., Paganoni, A.M., Ruggeri, F., Soriano, J. (2014).
Semiparametric Bayesian models for clustering and classification in presence of unbalanced in-hospital survival. Journal of the Royal Statistical Society, C (Applied Statistics), Vol.63, 25--46.
- Argiento, R., Cremaschi, A., Guglielmi (2014).
A ``Density-Based'' Algorithm for Cluster Analysis Using Species Sampling
Gaussian Mixture Models.
Journal of Computational and Graphical Statistics, Vol. 23, 1126--1142.
Post-print pdf
- Argiento, R., Guglielmi, A., Pievatolo, A. (2013).
Estimation, prediction and interpretation of NGG random effects models.
Statistical Papers, Vol. 55, 805--826.
- Guglielmi, A., Ieva, F., Paganoni, A.M., Ruggeri, F. (2013).
Hospital clustering in the treatment of acute myocardial infarction patients via a Bayesian semiparametric approach. In Statistical Models for Data Analysis ,
eds. P. Giudici, S. Ingrassia, M. Vichi, Springer.
- Di Lucca, M.A., Guglielmi, A., Müller, P., Quintana, F.A. (2013).
A simple class of Bayesian nonparametric autoregression models.
Bayesian Analysis, Vol. 8, 63--88.
- Argiento, R., Guglielmi, A., Soriano, J. (2013).
A semiparametric Bayesian generalized linear mixed model for the reliability of Kevlar fibres. Applied Stochastic Models in Business and Industry, Vol.29, 410--423.
- Guglielmi, A., Ieva, F., Paganoni, A.M., Ruggeri, F. (2012).
A Bayesian random-effects model for survival probabilities after acute myocardial infarction. Chilean Journal of Statistics, Vol. 3, 15--29.
- Favaro, S., Guglielmi, A., Walker, S.A. (2012). A class of
measure-valued Markov chains and Bayesian nonparametrics.
Bernoulli, Vol. 18, 1002--1030.
- Guglielmi, A., Ieva, F., Paganoni, A.M., Ruggeri, F. (2012).
Process indicators and outcome measures in the treatment of Acute Myocardial Infarction patients. In Statistical Methods in Healthcare (F. Faltin, R. Kenett and F. Ruggeri Eds.), Wiley.
- Giardina, F., Guglielmi, A., Quintana, F.A., Ruggeri, F. (2011).
Bayesian first order autoregressive latent variable models
for multiple binary sequences. Statistical Modelling, Vol. 11,
471--488.
- Argiento, R., Guglielmi, A., Pievatolo, A. (2010).
Mixed-effects modelling of Kevlar fibre failure times through
Bayesian nonparametrics.
Complex data modeling and computationally intensive statistical methods,
eds. P. Mantovan,
P. Secchi, Springer, p. 13-26.
- Argiento, R., Guglielmi, A., Pievatolo, A. (2010). Bayesian density
estimation and model selection using nonparametric hierarchical mixtures.
Computational Statistics and Data Analysis, Vol. 54, 816--832.
- Argiento, R., Guglielmi, A., Pievatolo, A. (2009). A comparison
of nonparametric priors in hierarchical mixture modelling for AFT
regression. Journal of Statistical Planning and Inference, Vol. 139,
3989-4005.
- Epifani I., Guglielmi A., Melilli E. (2009).
Moment-based approximations for the law of functionals of Dirichlet
processes. Applied Mathematical Sciences, Vol. 3, no. 20,
979 - 1004.
- Betrò, B., Bodini, A., Guglielmi, A. (2006).
Generalized moment theory and Bayesian robustness analysis for
hierarchical mixture models . Annals of the Institute of Statistical Mathematics, vol. 58, 721-738.
- Epifani, I., Guglielmi, A., Melilli, E. (2006).
A stochastic equation for the law of the random Dirichlet variance.
Statistics & Probability Letters, vol. 76, 495-502.
- Regazzini, E., Guglielmi, A., Di Nunno, G. (2002).
Theory and numerical analysis for exact distributions of
functionals of a Dirichlet process.
The Annals of Statistics, vol. 30, 1376-1411.
- Guglielmi, A., Holmes, C., Walker, S.G. (2002).
Perfect simulation involving functionals of a Dirichlet process .
Journal of Computational and Graphical Statistics, vol. 11,
306-310.
- Guglielmi, A., Tweedie, R.L. (2001). MCMC estimation of the law
of the mean of a Dirichlet process. Bernoulli, vol. 7, 573-592.
- Berger, J.O., Guglielmi, A. (2001). Bayesian and conditional frequentist
testing of a parametric model versus nonparametric alternatives.
Journal of the American Statistical Association, vol. 96, 174 -184.
- Guglielmi, A., Melilli, E. (2000).
Approximating de Finetti's measures for
partially exchangeable sequences.
Statistics & Probability Letters, vol. 48, 309-315.
- Betrò, B., Guglielmi A. (2000).
Methods for global prior robustness under generalized moment conditions.
In Robust Bayesian
analysis, Lecture Notes in Statistics, v. 152, Eds. D. Rios Insua,
F. Ruggeri, Springer, 273-294.
- Ruggeri, F., Barbieri, M.M., Guglielmi, A. (1999).
Scelta del modello statistico .
In Atti delle Giornate di Studio su ``Decisioni Statistiche'',
Pitagora Editrice, Bologna, 116-138.
- Guglielmi, A. (1998).
Risultati sulle distribuzioni di medie di un processo
di Dirichlet. La matematica nella Società e
nella Cultura, Bollettino U.M.I, vol.8, 1-A Suppl., 125-128.
- Guglielmi, A. (1998). A simple procedure calculating the
generalized Stieltjes transform of the mean of a Dirichlet process.
Statistics & Probability Letters, vol. 38, 299-303.
- Guglielmi, A., Melilli, E. (1998). Non-informative invariant priors yield peculiar marginals. Communications in Statistics - Theory and Methods, vol. 27, 2293-2306.
- Betrò, B., Guglielmi A. (1996).
Numerical robust Bayesian analysis under generalized moments
conditions .
In Bayesian Robustness, IMS Lecture Notes, vol. 29, Eds. J.
Berger, B. Betrò, E. Moreno, L. Pericchi, F. Ruggeri, G. Salinetti,
L. Wasserman.
Technical reports and Proceedings
- M. Beraha, D. Falco, A. Guglielmi (2021).
JAGS, NIMBLE, Stan: a detailed comparison among Bayesian MCMC software.
arXiv:2107.09357v1
- A. Guglielmi, M. Beraha, M. Gianella, M. Pegoraro, R. Peli (2021).
A transdimensional MCMC sampler for spatially dependent mixture models.
CLADAG 2021 -
Book of abstracts and short papers, Eds: G. C. Porzio, C.
Rampichini, C. Bocci, Firenze University Press, ISSN 2704-5846 (ONLINE)
- L. Ghilotti, M. Beraha, A. Guglielmi (2021).
Anisotropic determinantal point processes and their application in Bayesian mixtures.
Book of Short Papers SIS 2021, Eds: C. Perna, N. Salvati, F. Schirripa Spagnolo , Pearson Editor, ISBN: 9788891927361, p. 1226--1231.
- M. Gianella, M. Beraha, A. Guglielmi (2021).
Spatially dependent mixture models with a random number of components.
Book of Short Papers SIS 2021, Eds: C. Perna, N. Salvati, F. Schirripa Spagnolo , Pearson Editor, ISBN: 9788891927361, p. 936--941.
- M. Beraha, M. Pegoraro, R. Peli, A. Guglielmi (2020).
A Bayesian model to induce dependence between mixtures.
Book of Short Papers - SIS 2020, Pearson, Eds: A. Pollice, N. Salvati, F. Schirripa Spagnolo, ISBN: 9788891910776, p. 608--613.
- M. Beraha, G. Gualtieri, E. Villa, R. Vitali, A. Guglielmi (2020).
Choosing the right tool for the job: a systematic analysis of general purpose MCMC software.
Book of Short Papers - SIS 2020, Pearson, Eds: A. Pollice, N. Salvati, F. Schirripa Spagnolo, ISBN: 9788891910776, p. 661-666.
- M. Beraha, A. Guglielmi (2019). Invited discussion on ``Latent nested nonparametric priors'' by Camerlenghi F., Dunson D. B., Lijoi A., Prunster
I. and Rodriguez A., Bayesian Analysis, Vol. 14, 1326-1332.
- M. De Iorio, S. Favaro, A. Guglielmi, L. Ye (2019).
Bayesian nonparametric temporal
dynamic clustering via autoregressive Dirichlet priors.
arXiv:1910.10443
- A. Cadonna, A. Cremaschi, A. Guglielmi (2019).
Bayesian modeling for large spatio-temporal data: an application to mobile networks.
Book of Short Papers SIS 2019, Eds: G. Arbia, S. Peluso, A. Pini, G. Rivellini, Pearson Editor, ISBN: 9788891915108, p. 691-696.
- G. Bissoli, C. Principi, G.M. Rinaldi, M. Beraha, A. Guglielmi (2019).
A Bayesian model for network flow data: an application to BikeMi trips.
Book of Short Papers SIS 2019, Eds: G. Arbia, S. Peluso, A. Pini, G. Rivellini, Pearson Editor, ISBN: 9788891915108, p. 673-678.
- R. Argiento, I. Bianchini, A. Guglielmi, E. Lanzarone (2018).
Bayesian nonparametric covariate driven clustering.
Book of Short Papers SIS 2018, Eds: A. Abbruzzo, E. Brentari, D. Piacentino, M. Chiodi, Pearson Editor, ISBN: 9788891910233.
- G. Paulon, M. De Iorio, A. Guglielmi (2016).
Bayesian autoregressive semiparametric models
for gap times of recurrent events.
SIS 2016, 48-th Scientific Meeting of the Italian Statistical Society, Proceedings, Eds: S. Cabras, T. Di Battista and W. Racugno, ISBN: 978-88-8467-874-4.
- I. Nawajah, R. Argiento, A. Guglielmi, E. Lanzarone (2014).
Joint Prediction of Demand and
Care Duration in Home Care Patients: a Bayesian Approach.
SIS 2014, 47-th Scientific Meeting of the Italian Statistical Society, Proceedings, Eds: S. Cabras, T. Di Battista and W. Racugno, ISBN: 978-88-8467-874-4.
- R. Argiento, I. Bianchini, A. Guglielmi (2014).
A Bayesian nonparametric model for density and
cluster estimation: the $\varepsilon$-NGG process mixture.
SIS 2014, 47-th Scientific Meeting of the Italian Statistical Society, Proceedings, Eds: Monica Pratesi and Cira Pena, ISBN: 9788861970618 .
- R. Argiento, A. Guglielmi (2014).
Bayesian principal curve clustering by species-sampling mixture
models.
SIS 2014, 47-th Scientific Meeting of the Italian Statistical Society, Proceedings, Eds: S. Cabras, T. Di Battista and W. Racugno, ISBN: 978-88-8467-874-4.
- R. Argiento, A. Cremaschi, A. Guglielmi (2013).
Cluster analysis of curved-shaped data with species-sampling mixture models.
Proceedings of SCo2013 - Complex Data Modeling and Computationally Intensive
Statistical Methods for Estimation and Prediction. Milano (ITALY), 9-11 September 2013.
- I. Nawajah, R. Argiento, A. Guglielmi, E. Lanzarone (2013).
A Bayesian approach for modeling patient's demand and hidden health status: an application to Home Care. Proceedings of SCo2013 - Complex Data Modeling and Computationally Intensive
Statistical Methods for Estimation and Prediction.
- A. Guglielmi, F. Ieva, A.M. Paganoni, E. Prandoni (2013).
Joint modeling of multiple mixed-type outcomes using Bayesian semiparametrics: an application to acute myocardial infarction patients.
Proceedings of SCo2013 - Complex Data Modeling and Computationally Intensive
Statistical Methods for Estimation and Prediction.
- E. Prandoni, A. Guglielmi, F. Ieva, A.M. Paganoni (2013).
A semiparametric Bayesian multivariate model for survival probabilities
after acute myocardial infarction. In The contribution of young researchers to Bayesian statistics - Proceedings of BAYSM2013 (Springer Proceedings in Mathematics & Statistics, vol. 63), p. 1-5.
- R. Argiento, A. Guglielmi, F. Ieva, A. Parodi (2013).
Analysis of hospitalizations of patients affected by chronic heart disease.
In The contribution of young researchers to Bayesian statistics - Proceedings of BAYSM2013 (Springer Proceedings in Mathematics & Statistics, vol. 63), p. 1-5.
- R. Argiento, A. Guglielmi, E. Lanzarone, I. Nawajah (2013).
Bayesian analysis and prediction of patients' demands for visits in home care.
In The contribution of young researchers to Bayesian statistics - Proceedings of BAYSM2013 (Springer Proceedings in Mathematics & Statistics, vol. 63), p. 1-7.
- I. Nawajah, R. Argiento, A. Guglielmi, E. Lanzarone (2013).
Estimating patient demand progression in home care: a Bayesian modeling approach.
Proceedings of the 39th Conference on Operational Research Applied to Health Services (ORAHS 2013), p. 44-47.
- A. Cadonna, A. Guglielmi, F. A. Quintana (2011).
Bayesian nonparametric AR(1)-models for multiple binary sequences.
In 7th Conference on Statistical Computation and Complex Systems (SCo 2011),
Conference Proceedings.
- A. Guglielmi, F. Ieva, A.M. Paganoni, F. Ruggeri, J. Soriano (2011).
Semiparametric Bayesian approaches to mixed-effects models for outcome measures in the treatment of acute myocardial infarction.
In 7th Conference on Statistical Computation and Complex Systems (SCo 2011),
Conference Proceedings.
- A. Guglielmi, F. Ieva, A.M. Paganoni, F. Ruggeri, J. Soriano (2011).
Hospital clustering in the treatment of acute myocardial infarction patients via a Bayesian nonparametric approach. Proceedings di Cladag 2011 (8th International Meeting of the Classification and Data Analysis Group), Pavia, 7-9 settembre 2011.
- A. Guglielmi, F. Ieva, A.M. Paganoni, F. Ruggeri (2010).
A hierarchical random-effects model for survival in patients with Acute Myocardial Infarction. In Atti della XLV Riunione Scientifica della Società Italiana di Statistica 2010, Padova, 16-18 Giugno, 2010.
- R. Argiento, A. Guglielmi, A. Pievatolo (2007).
Bayesian semiparametric inference for the AFT model, using N-IG mixture
priors.
In Atti del convegno intermedio 2007 ``Risk and Prediction'',6-8 giugno 2007, CLEUP, Padova.
- R. Argiento, A. Guglielmi, A. Pievatolo, F. Ruggeri (2006).
Bayesian semiparametric inference for the accelerated failure time
model using hierarchical mixture modeling with N-IG priors.
Joint Statistical Meeting Proceedings,
ASA Section on Bayesian Statistical Science, [CD-ROM].
- I. Epifani, A. Guglielmi and E. Melilli (2004).
Some new results on random Dirichlet variance.
IMATI-CNR TR 2004.15-MI.
- B. Betrò, A. Bodini, A. Guglielmi (2003).
Un problema non parametrico di robustezza bayesiana nella classe
dei momenti generalizzati. XVII Congresso UMI, Conferenze e Comunicazioni, 141-141.
- B. Betrò, A. Bodini, A. Guglielmi (2003).
Nonparametric Robust Bayesian analysis under generalized moment
conditions. Bulletin of the International Statistical Institute, 54-th
Session, Contributed Papers, 443-444.
- J. O. Berger, A. Guglielmi (1999).
Bayesian testing of a parametric model versus nonparametric
alternatives. Proceedings of the Section on
Bayesian Statistical Science of the American Statistical Association.
-
- A. Guglielmi (1998).
Rate of convergence to the law of the mean of a Dirichlet process.
Quaderno IAMI 98.18.
-
- A. Guglielmi and E.Melilli (1998).
Measuring exchangeability in a partially exchangeable sequence.
Quaderno IAMI 98.10.
-
- A. Guglielmi (1998).
Numerical analysis for the distribution function of the mean of a
Dirichlet process.
Quaderno IAMI 98.1.
-
- A. Guglielmi (1997).
Risultati sulle distribuzioni di medie di processi di Dirichlet .
Ph.D. dissertation, Università degli Studi di Milano.
- B. Betrò, A. Guglielmi, F. Rossi (1996).
Robust Bayesian analysis
for the Power Law Process. Proceedings of the Section on
Bayesian Statistical Science of the American Statistical Association.
- A. Guglielmi, E. Melilli (1996). Non-informative, invariant and
improper priors: some consequences of their use.
Atti della XXXVIII Riunione Scientifica della Società Italiana
di Statistica.
-
- A. Guglielmi and E. Melilli (1994).
A note on degenerate exchangeable sequences .
Quaderno n. 45/1994, Dip. Matematica, Università degli Studi di
Milano.
Return to Alessandra Guglielmi's Homepage